Nhà toán học Richard Bellman đã phát minh phương pháp quy hoạch động vào năm 1953. Ngành này đã được thành lập như là một chủ đề về kỹ nghệ và phân tích hệ thống đã được tổ chức IEEE thừa nhận.
Quy hoạch động thường dùng một trong hai cách tiếp cận:
top-down (Từ trên xuống): Bài toán được chia thành các bài toán con, các bài toán con này được giải và lời giải được ghi nhớ để phòng trường hợp cần dùng lại chúng. Đây là đệ quy và lưu trữ được kết hợp với nhau.
bottom-up (Từ dưới lên): Tất cả các bài toán con có thể cần đến đều được giải trước, sau đó được dùng để xây dựng lời giải cho các bài toán lớn hơn. Cách tiếp cận này hơi tốt hơn về không gian bộ nhớ dùng cho ngăn xếp và số lời gọi hàm. Tuy nhiên, đôi khi việc xác định tất cả các bài toán con cần thiết cho việc giải quyết bài toán cho trước không được trực giác lắm
Phương pháp quy hoạch động:
Phương pháp quy hoạch động dùng để giải bài toán tối ưu có tính chất đệ quy, tức là việc tìm phương án tối ưu cho bài toán đó có thể đưa về tìm phương án tối ưu của một số hữu hạn các bài toán con. Đối với nhiều thuật toán đệ quy, nguyên lý chia để trị (devide and conquer) thường đóng vai trò chủ đạo trong việc thiết kế thuật toán. Để giải quyết một bài toán lớn, ta chia nó thành nhiều bài toán con cùng dạng với nó để có thể giải quyết độc lập. Trong phương pháp quy hoạch động, nguyên lý này càng được thể hiện rõ: Khi không biết cần phải giải bài những toán con nào, ta sẽ đi giải quyết tất cả các bài toán con và lưu trữ những lời giải hay đáp số của chúng với mục đích sử dụng lại theo một sự phối hợp nào đó để giải quyết những bài toán tổng quát hơn. Đó chính là điểm khác nhau giữa Quy hoạch động và phépđệ quy và cũng là nội dung Phương pháp quy hoạch động:
+Phép đệ quy bắt đầu từ bài toán lớn phân rã thành nhiều bài toán con và đi giải từng bài toán con đó. Việc giải từng bài toán con lại đưa về phép phân rã tiếp thành nhiều bài toán con nhỏ hơn và lại đi giải quyết bài toán nhỏ hơn đó bất kể nó đã được giải hay chưa.
+Quy hoạch động bắt đầu từ việc giải tất cả các bài toán nhỏ nhất (bài toán cơ sở) để từ đó từng bước giải quyết những bài toán lớn hơn, cho tới khi giải được bài toán lớn nhất (bài toán ban đầu).
Không có nhận xét nào:
Đăng nhận xét